
Mon. Not. R. Astron. Soc. 401, L24–L28 (2010) doi:10.1111/j.1745-3933.2009.00778.x

Wavelet-based Faraday rotation measure synthesis
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ABSTRACT
The Faraday rotation measure synthesis, as a method for analysing multichannel observations
of polarized radio emission to investigate galactic magnetic field structures requires the defi-
nition of complex polarized intensity in the wavelength range −∞ < λ2 < ∞. The problem
is that the measurements at negative λ2 are not possible. We introduce a simple method for
continuation of the observed complex polarized intensity P (λ2) into the domain λ2 < 0 using
symmetry arguments. The method is suggested in context of magnetic field recognition in
galactic discs where the magnetic field is supposed to have a maximum in the equatorial plane.
The method is quite simple when applied to a single Faraday rotating structure on the line of
sight. Recognition of several structures on the same line of sight requires a more sophisticated
technique. We also introduce a wavelet-based algorithm which allows us to consider a set of
isolated structures in the (φ, λ2) plane (where φ is the Faraday depth). The method essen-
tially improves the possibilities for reconstruction of complicated Faraday structures using the
capabilities of modern radio telescopes.
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1 IN T RO D U C T I O N

Observations of polarized radio emission are the main sources of
information on magnetic fields of galaxies. The basic idea of mag-
netic field analysis from polarized radio emission data originates
in the classical paper of Burn (1966) (for a later development see
Sokoloff et al. 1998). In particular, Burn (1966) noted that the com-
plex polarized intensity P obtained from a radio source is related to
the Faraday dispersion function F (φ) as

P (λ2) =
∫ ∞

−∞
F (φ)e2iφλ2

dφ. (1)

F (φ) is the fraction of radiation with the Faraday depth φ multiplied
by intrinsic complex polarization and it is an important emission
characteristic of interest. Here the Faraday depth φ is defined by

φ(z) = −0.81
∫ 0

z

B‖ne dz′, (2)

where B‖ is the line-of-sight magnetic field component measured
in μG, ne is the thermal electron density measured in cm−3 and the
integral is taken from the observer at z = 0 over the region which
contains both, magnetic fields and free electrons, and z is measured
in parsecs. Following equation (1) P is the inverse Fourier transform
of F. Correspondingly, the Faraday dispersion function F is the
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Fourier transform of the complex polarized intensity:

F (φ) = 1

π
P̂ (k), (3)

where k = 2φ, and the Fourier transform is defined as

f (x) = 1

2π

∫ ∞

−∞
f̂ (k) eikxdk, f̂ (k) =

∫ ∞

−∞
f (x) e−ikx dx. (4)

Implementation of multichannel spectropolarimetry on modern
radio telescopes provided observations of P over a wide range of λ

(e.g. Haverkorn, Katgert & de Bruyn 2000) which made the use of
equation (3) possible. This is the idea of Faraday rotation measure
(RM) Synthesis (Brentjens & de Bruyn 2005) which opened new
perspectives in investigations of magnetic field of galaxies and clus-
ters of galaxies (Haverkorn, Katgert & de Bruyn 2003; de Bruyn &
Brentjens 2005; Beck 2009; Heald, Braun & Edmonds 2009).

A key problem of RM Synthesis application is that P is defined
only for λ2 > 0 and in practice can be observed only in a finite spec-
tral band. Moreover, the maximum of P in practice can be located
outside the available spectral band (see e.g. Fig. 1b). Development
of robust methods for the reconstruction of F from P in a given
spectral range becomes crucial for the practical implementation of
RM Synthesis.

Fig. 1 shows results of RM Synthesis applied to a standard test
as exploited by Brentjens & de Bruyn (2005). Panel (a) shows the
function F, which includes three real-valued box-like structures
and panel (b) – the corresponding polarized intensity P (the dashed
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Figure 1. RM Synthesis reconstruction of a standard example from
Brentjens & de Bruyn (2005): (a) initial F (φ) which is chosen purely real;
(b) amplitude of PI (λ2); (c) F (φ) reconstructed with whole domain λ2 >

0: real part – thin solid, imaginary part – dashed, amplitude – thick solid;
(d) F (φ) reconstructed from the data of spectral band 0.6 < λ < 0.78 m.
The spectral window of observations is indicated in panel (b) by horizontal
dashed line.

horizontal line shows the spectral window 0.6 < λ < 0.78 m). We
used a channel spacing of δλ = 0.4 cm. Hereafter, F and P are
numerically evaluated in arbitrary but mutually consistent units.
Note that F is in general a complex-valued function. Its modulus
defines the emission and its phase defines the intrinsic position
angle. Panel (c) shows the result of the straightforward application
of the RM Synthesis algorithm to the physical range λ2 > 0, while
P (λ2) is set to zero for all negative λ2. We see that the real part of the
reconstructed signal is the same as the initial one (except that it has
a twice lower amplitude); however, the reconstructed signal obtains
a substantial imaginary part with a shape which is quite remote from
the real part. This leads to a change of the emission distribution and
a loss of any information concerning the position angle (apart from
the central point of the emission region, where the position angle is

correctly zero). In the context of chaotic magnetic fields in galaxy
clusters this loss is less important (de Bruyn & Brentjens 2005),
but in galactic magnetic field studies it becomes crucial because
the intrinsic position angle determines the orientation of the regular
magnetic field component perpendicular to the line of sight. Fig. 1d
shows that the reconstruction becomes much more difficult if we
restrict the data to a relatively narrow spectral band 0.6 < λ <

0.78 m. We see that even the sign of the reconstructed real part
can be wrong. In that case the algorithm for finite spectral band
introduced by Brentjens & de Bruyn (2005) was used.

A general message obtained from Fig. 1 is that in order to envisage
possible ways to get a practical implementation of RM Synthesis,
one has to include some additional information based on the nature
of the physical phenomena which provide the Faraday rotation. Here
we concentrate our efforts on the problems associated with missing
P (λ2) for λ2 < 0.

2 IMPROVI NG THE R M SYNTHESI S
A L G O R I T H M

The complex-valued intensity of polarized radio emission for a
given wavelength,

P (λ2) =
∫ ∞

0
ε(z)e2iχ (z)e2iφ(z)λ2

dz, (5)

is defined by the emissivity ε and the intrinsic position angle χ

along the line of sight. Here z is the distance from observer to a
point in the emitting region; the integral is taken over the whole
emitting region. If the Faraday depth φ is a monotonic function of z
(which means that z is a single-valued function of φ), we can define
the Faraday dispersion function as a function of the Faraday depth

F (φ) = ε(φ)e2iχ (φ)

(
dφ

dz

)−1

. (6)

In the ideal case, reconstructing the Faraday dispersion function F
from (3) and knowing the Faraday depth φ for any z, one can derive
the characteristics of radio emission (ε and χ ) along the line of
sight. They can be used as a tomography in order to derive some
characteristics of the magnetic field distribution from F. The task of
RM Synthesis is much more modest and concerns the reconstruction
of the Faraday function from the observed polarized emission which
itself is already a complicated problem.

Let us consider a physically motivated simple example, i.e. P
produced by a two-layer system, to isolate and overcome the short-
comings of the RM Synthesis technique. Each layer contains a
homogeneous magnetic field which has non-vanishing line-of-sight
and perpendicular components. Both layers are thought to be emit-
ting and rotating polarized radio waves. The corresponding F (φ) is
shown in Fig. 2(a). It is important for the discussion below that the
analysed signal has non-vanishing real and imaginary parts. The ab-
solute value of F (φ) indicates how much polarized emission comes
from a region with the Faraday depth φ and its phase gives the
intrinsic position angle (about 13◦ and 31◦) of the emission. Just to
illustrate the variety of possible situations, we choose two different
shapes of the slabs, i.e. one slab with sharp boundaries and one with
a Gaussian shape.

The result of the straightforward application of RM Synthesis
where the integral is taken over the physically admissible region
λ2 > 0 is shown in Fig. 2(b). RM Synthesis reproduces to some ex-
tent the absolute value of the signal, but fails to reproduce its phase.
A naive interpretation of this result could be that field reversals
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Figure 2. Standard RM Synthesis for a test Faraday dispersion function. (a)
Original test function which includes one Gaussian and one box structure.
Reconstructions: (b) using the whole domain λ2 > 0; (c) using the window
0.6 < λ < 0.78 m; (d) using the window 0.6 < λ < 2.5 m. Real part – thin
solid, imaginary part – dashed, amplitude – thick solid.

occur in each layer, but is obviously incorrect. In the same figure,
we show the result of F (φ) reconstruction within the spectral band
0.6 < λ < 0.78 m (panel c). Then both structures become diffuse
with a more or less arbitrary phase. The last panel illustrates what
happens if the upper wavelength boundary will be extended up to
λ = 2.5 m (as expected for the Low Frequency Array and the Square
Kilometre Array telescopes). This extension essentially improves
the recognition of the sharp structure (the right one in the figure)
but almost does not affect the reconstruction of the left (Gaussian)
structure.

To avoid the non-uniqueness in the Faraday dispersion function
reconstruction, some additional information (or hypothesis) is re-
quired. We suggest to improve the above reconstruction by some
constraint concerning the possible symmetry of an isolated object.

Suppose that the expected objects are mainly galactic discs with
magnetic fields believed to be symmetric with respect to the galactic

Figure 3. RM Synthesis for the test from Fig. 2 using the extension of
P (λ2) in the domain λ2 < 0 defined by (7). The parameter φ0 is adjusted to
the position of the left structure (a and b) or right structure (c and d). The
whole domain of λ is used in panels (a and c) and the spectral window 0.6
< λ < 0.78 m in panels (b and d). Real part – thin solid, imaginary part –
dashed, amplitude – thick solid.

equator. Then the desired F should be symmetric even with respect
to the centre of the given object. Therefore, we consider each max-
imum of the reconstructed F (φ) separately and prescribe that the
continuation of P (λ2) to the region of λ2 < 0 has to be chosen in
a way which makes F (φ) symmetric with respect to the point φ =
φ0, where φ0 is the position of the maximum under consideration.
This means that F (2φ0 − φ) = F (φ) and using the shift theorem
one gets

P (−λ2) = exp(−4iφ0λ
2)P (λ2). (7)

The antisymmetric case can be considered as well with slight
change in the algorithm: equation (7) changes to P (−λ2) =
− exp(−4iφ0λ

2)P (λ2).
Fig. 3 shows the results of reconstruction of the same test but

following the suggested continuation. The test function includes
two objects, while the algorithm includes only one parameter φ0.
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First, we performed the continuation adjusting φ0 to the position
of the left object (panel a). Then the method gives realistic result
for this object. The reconstructed structure has no apparent internal
field reversal and the ratio of real and imaginary parts of F (φ), i.e.
the phase, is correctly reproduced. Position angles are restored with
the accuracy of 3◦. Of course, the result for the other layer, i.e. the
second maximum of |F (φ)| in Fig. 3 remains false. Panel (b) shows
what happens if the range of λ covered by the observation is reduced
to 0.6 < λ < 0.78 m. Instead of one peak one gets a sequence of
peaks, which is a usual result for a Fourier reconstruction using a
narrow spectral window. The suggested procedure does not sup-
press the sidelobes in the standard rotation measure spread function
(RMSF) (Heald et al. 2009) but corrects the phase within the main
central peak. Of course, the amplitude of each peak is much less
than the amplitude of the peak in panel (a); however, the ratio of real
and imaginary parts of F (φ) in the central peak remains realistic.
If the parameter φ0 is chosen following the position of the second
object, the method gives a correct reconstruction for the right layer
and fails to reproduce the left one. An obvious shortcoming of the
method exploited is its local nature: We obtain a realistic shape of
a chosen maximum and ignore what happens with the other one. A
natural extension is to apply the recommendation of equation (7)
locally to each maximum. This extension brings the idea of wavelets
into consideration.

3 R M SYNTHESIS AND WAVELETS

Wavelet transform presents a kind of ‘local’ Fourier transform,
allowing us to isolate a given structure in physical space and the
Fourier space. Let us define the wavelet transform of the Faraday
dispersion function F (φ) as

wF(a, b) = 1

|a|
∫ ∞

−∞
F (φ)ψ∗

(
φ − b

a

)
dφ, (8)

where ψ(φ) is the analysing wavelet, a defines the scale and b
defines the position of the wavelet. Then the coefficient wF gives
the contribution of corresponding structure into the function F.

The function F can be reconstructed using the inverse transform
(see, e.g. Daubechies 1992)

F (φ) = 1

Cψ

∫ ∞

−∞

∫ ∞

−∞
ψ

(
φ − b

a

)
wF (a, b)

da db

a2
. (9)

The reconstruction formula (9) exists under condition that

Cψ = 1

2

∫ ∞

−∞

|ψ̂(k)|2
|k| dk < ∞. (10)

Here ψ̂(k) = ∫
ψ(φ)e−ikφdφ is the Fourier transform of the

analysing wavelet ψ(φ).
Let us emphasize that the inverse formula (9) is usually written

for real signals. Then the scale parameter a is positively defined and
the integral is taken for 0 < a < ∞. In the case of a complex-valued
function, the range of a can be limited by positive values a > 0 by
taking a real analysing wavelet ψ(x). In general case of a complex-
valued function and a complex wavelet, the scale parameter a should
be extended into the domain of negative values (like wavenumbers
in Fourier space).

For the sake of definiteness, we use as the analysing wavelet the
so-called Mexican hat ψ(φ) = (1 − φ2) exp(−φ2/2). The wavelet
is real, however, the function P is complex, so that the wavelet
coefficients wF are complex as well. For the chosen wavelet wF(−a,
b) = wF(a, b) and Cψ = 1.

Using the definition of the wavelet transform (8) and relation (3)
we can directly define the wavelet decomposition of the Faraday
dispersion function from the polarized intensity P (λ2)

wF(a, b) = 1

π

∫ ∞

−∞
P (λ2)e−2ibλ2

ψ̂∗(−2aλ2)dλ2. (11)

Note that in the case of real F the problem of negative λ2 can be
solved using progressive wavelets, whose Fourier image is localized
in the domain of positive wavenumbers. Thus, using this kind of
wavelets one avoids the problem of the P (λ2) continuation in the
domain λ2 < 0.

For the general case, we divide Equation (11) into two parts wF(a,
b) = w−(a, b) + w+(a, b), where

w−(a, b) = 1

π

∫ 0

−∞
P (λ2)e−2ibλ2

ψ̂∗(−2aλ2)dλ2, (12)

w+(a, b) = 1

π

∫ ∞

0
P (λ2)e−2ibλ2

ψ̂∗(−2aλ2)dλ2. (13)

We propose the following algorithm: first, knowing P (λ2) for λ2

> 0 we calculate the coefficients w+(a, b) and we recognize the
dominating structures in the map |w+(a, b)|. The coordinate b of
the corresponding maximum gives us the value of φi

0, where upper
index i indicates the number of the structure. Then we reconstruct
the coefficients w−(a, b) following the idea of equation (7), but
reformulated for the local domain in wavelet space (a, b). Namely,
we define

w−(a, b) = w+
[
a, 2φi

0(a, b) − b
]
, (14)

where the parameter φi
0(a, b) for the given point (a, b) is chosen

according to the structure i which dominates in its vicinity.
Now we apply the suggested algorithm to the test function from

Fig. 2. The map |w+(a, b)| presented in Fig. 4a demonstrates two
well-defined structures. The b coordinates of the maxima are taken
as φi

0. The result of the reconstruction (see Fig. 4b) shows that
the method reproduces the amplitude and phase of F (φ) for both
layers. The reconstruction here is performed using P (λ2) for the
whole range λ2 > 0. The comparison of the reconstructed position
angle using standard and wavelet-based RM Synthesis is shown in
Fig. 5. The suggested algorithm gives correct value for χ within
both emission regions. Panels (c) and (d) show what happens for
the reconstruction using the spectral window 0.6 < λ < 0.78 m.
One can see the wavelet map is empty in its substantial part a >

2; however, the structures remain well recognizable (panel c). The
reconstructed F contains several oscillations in domains related to
both layers. The amplitude of each oscillation becomes much lower
than that in panel (b); however, the ratio of the real and imaginary
parts in the central maxima remains correct. The third couple of
panels shows the reconstruction within the extended window 0.6 <

λ < 2.5 m. This extension allows one to keep the horn-like struc-
tures in the bottom of the wavelet plane (panel e) which provide
the reconstruction of sharp boundaries of the box-like structure
(panel f).

4 C O N C L U S I O N S

The development of multichannel observations of polarized radio
emission opens promising perspectives for the understanding of
cosmic magnetic fields on galactic and intergalactic scales. The

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 401, L24–L28



L28 P. Frick et al.

Figure 4. Wavelet-based RM Synthesis for the test from Fig. 2. The modulus of wavelet coefficients on the (a, b) plane (panels a, c and e) and the result of
reconstruction (panels b, d and f) for whole domain of λ (panels a and b) and the windows 0.6 < λ < 0.78 m (panels c and d) and 0.6 < λ < 2.5 m (panels e
and f). Real part – thin solid, imaginary part – dashed, amplitude – thick solid.

Figure 5. The intrinsic position angle χ for the test from Fig. 2(a) has been
reconstructed with standard (dashed) and wavelet-based (thin solid) RM
Synthesis. The whole domain of λ is used. Thick solid lines show initial χ

in the location of the both structures.

first fruitful applications of RM Synthesis suggested in this con-
text include the recognition of local structures in the Milky Way
(Haverkorn et al. 2003), clusters of galaxies (de Bruyn & Brentjens
2005) and spiral galaxies (Heald et al. 2009). However, in gen-
eral the RM Synthesis algorithm contains a fundamental problem
emerging from the fact that the reconstruction formula requires the
definition of complex polarized intensity in the range −∞ < λ2 <

∞. In this Letter, we introduce a simple method for continuation of
observed complex polarized intensity P (λ2) into the domain of neg-
ative λ2 < 0. The method is suggested in context of magnetic field
recognition in galactic discs, for which the magnetic field strength
is supposed to have a maximum in the equatorial plane.

The suggested method is quite simple when applied to a single
structure on the line of sight. Recognition of several structures on
the same line of sight requires a more sophisticated technique. The
problem of structure separation is resolved using the wavelet de-
composition. A simple test example demonstrates the applicability

of this method. The polarization angle reconstruction is significantly
improved over the standard technique. The wavelets can be useful to
also overcome some other problems of RM Synthesis, related to the
multiband structure of the observational domain in λ-space, noise
filtration, etc (e.g. Frick et al. 1997, 2001). The method essentially
improves the possibilities for reconstruction of complicated Faraday
structures using the capabilities of modern radio telescopes.

Finally, note that our simple examples illustrate that the extension
of the observational band into the long-wavelength domain is helpful
for the recognition of structures with sharp boundaries, while the
short-wavelength domain is crucial for the reconstruction of smooth
structures.
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